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A simple matrix formalism presented by Callaghan [J. Magn.
Reson. 129, 74-84 (1997)], and based on the multiple propagator
approach of Caprihan et al. [J. Magn. Reson. A 118, 94-102
(1996)], allows for the calculation of the echo attenuation, E(q), in
spin echo diffusion experiments, for practically all gradient wave-
forms. We have extended the method to the treatment of restricted
diffusion in parallel plate, cylindrical, and spherical geometries,
including the effects of fluid—surface interactions. In particular,
the g-space coherence curves are presented for the finite-width
gradient pulse PGSE experiment and the results of the matrix
calculations compare precisely with published computer simula-
tions. It is shown that the use of long gradient pulses (6 ~ a*/D)

from the requirements of the theory. In particular the descrip
tion of the signal dependence on pore morphology has de
pended, until very recently, on the need for gradient pulses t
be sufficiently narrow in time that the distances diffused by the
molecules are insignificant compared to the pore dimension
Because the distances probed are inversely related to the a
under gradient pulses, and because the magnitudes of the
pulses tend to be limited by coil and current capabilities, thi:
temporal limitation has restricted both the time and the distanc
scales accessible to gradient spin echo NMR. A relaxation c
the narrow pulse condition would provide access to lengtt

create the illusion of smaller pores if a narrow pulse approxima-
tion is assumed, while ignoring the presence of significant wall
relaxation can lead to both an underestimation of the pore dimen-
sions and a misidentification of the pore geometry.

Press

scales on the order of or less than L. Furthermore, if the
theory could be adapted to deal with any gradient waveforn
modulation whatsoever, then the interpretation of imaging dat
would be more precise and the use of, for example, oscillator
waveforms, could lead to the use of new frequency domai
methods which would provide access to the submillisecon
timescale 9, 10.

Recently a theoretical method was proposed by Caprtian

The influence of boundary restrictions on fluid diffusivity?l- (11) which has the potential to address these difficulties. Ir
has important implications for the modeling of fluid transpoff€ir approach the gradient waveform is notionally subdividec
in porous media. The NMR signals obtained from the intefdt0 & sequence of narrow gradient impulses and evolutio
penetrating fluid in a porous medium are also strongly inflikeriods in which no gradient is present. This trick permits the
enced by boundary effects. For example, in imaging and ntis€ of successive propagators for the spin motion sandwiche
croimaging experiments edge enhancement effects may re§gfween evolution operators describing the phase displac
(1-3. In gradient spin echo measurements of restricted diffients caused by each impulse. The great advantage of sucl
sion, the pore morphology can impart a characteristic signat@@composition is that it allows one to embed all the necessa
which permits the use of these measurements to obtain strifgormation about boundary influence to the spin motion in the
tural insight via a diffraction formalism4(-6). In relaxation form of the propagators, each of which may be expressed |
measurements the effects of differential relaxivity at the pogigenmodes of the solutions to the diffusion equation unde
surface and within the fluid bulk can provide information abow@ppropriate boundary conditions. In a subsequent arti@ (
pore surface-to-volume ratio3)( The use of such NMR phe- one of us showed that this trick could be expressed in a ver
nomena is well-established in food science, in petroleum esimple mathematical language based on the use of matr
gineering, in biomedicine, and in materials sciengpg ( multiplication. Indeed, for any gradient waveform whatsoever

Any effective application of these methods depends on thely three matricesR, S, andA, need be calculated and the
precision of theory used in the data analysis. In practice tfisal expression for the echo attenuation can be written down i
application of gradient spin echo and microimaging experd closed form comprising a product of these matrices which i
ments to the study of porous media can be severely limitsanply related to the known gradient modulation. Furthermore
because of some experimental constraints which arise diredtlg numerical calculation of this attenuation takes only seconc

© 1999 Academic

INTRODUCTION

1090-7807/99 $30.00 358

Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.



SPIN ECHO ANALYSIS OF RESTRICTED DIFFUSION 359

H 90 H180y
r.f.

i |

<—A———>

time

signal

FIG. 1. Representation of the standard two-pulse PGSE experiment.

using modern matrix multiplication packages such as “Mat- m
lab.” In that earlier article these matrices were presented for the P(rir’, t) = > exp(—AH)us(nus(r’), [3]
case of molecules constrained within planar pores in the ab- n=0
sence of wall relaxation and the results so obtained agreed
precisely with computer simulations of the pulsed gradient spin
echo (PGSE) NMR experimerit3) under finite pulse duration where theu,(r) are orthonormal set of solutions to the Helm-
conditions. In a later publicatiori4) we have demonstratedholtz equation parameterized by the eigenvaljeand are
similar agreement with the results of microimaging experubject to the identity
ments on rectangular pores in which significant edge-enhance-
ment effects were present.

We now present exact analytic forms &y S, andA in the
case of all three geometries of practical significance, the 3(r—r") =2 u(Nui(r’). (4]
sphere, cylinder, and plane, and allow in these expressions for n=0
the effects of wall relaxivity. The eigenmodes for these prob-
lems are well-known X5) and we use these to calculate thq.
relevant matrix element expressions, verifying the numeric
results of our calculations by comparison with published com-
puter simulationsX6), in the case of perfectly reflecting walls.
Given the known influence of wall relaxation effects on the Dfi - VP.+ MP.= 0, 5]
relevant eigenmode parameters, this particular verification for
each of the three geometries helps provide confidence in the
entire theory. wheren is the outward surface normal aiilis the usual wall
relaxation parametef7). Using these relationships Eqg. [1] has
been solved exactly in the case of molecules diffusing withir
parallel planes, cylinders, and spheres and closed form expre
ifons for these geometries have been derivég 18-20.

©

e eigenvaluea , depend on the boundary condition for the
se of relaxing walls, namely’

PROPAGATORS FOR RESTRICTED DIFFUSION

The key mathematical tool used to describe the motion 3
molecules undergoing restricted diffusion is the conditional
propagatorP(r|r’, t), an ensemble-averaged probability den-

sity for spin displacement fromto r’ over a timet. P(r|r’, S [R AJKRN-K[R ATIKR ST
t) obeys the initial condition, g(d A P NI i
BRIALL et <
time interval ©
PJrir’, 0) = &(r —r’), [1] >
>
- n
along with the Ficks’ law differential equation,
< 2N >
DV’ 2Ps = dPJot. [2] FIG. 2. Schematic illustration of impulse decomposition of the finite pulse

width PGSE experiment in whichror = (N + 1), A = (N + 37, ands
. . . . = (K + ). Breaking the waveform into typically 100 impulses allows the
This equation may be solved using the standard eigenmQggo attenuation to be calculated rapidly while providing suitable digitizatior

expansion 17) of the gradient pulses.
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THE IMPULSE-PROPAGATOR SCHEME As shown in Ref. 12) once the eigenmode representation is

used to describe the propagators one obtains the simple mat
In order to explain the impulse-propagator method it is helpfgkoduct

to begin with the standard two-pulse PGSE experiment, shown in
Fig. 1, in which the gradient is applied as two narrow impulses of
amplitudeG, durations, and time separatiof. For this experi- E = S(q) RIA(@)]™ . . .R[A(q)]™
ment the normalized echo signal is given B m
gnial is given ByZ) .. RIA@)]™RS!(~q), (0]

E(q) :jj drdr’p(r)Pgr|r’, A) where

X expi2mwq - r)expi2mq-r’), [6]
Sdq) = V”ZJ drug(r)expi2mq - r) [10a]
whereq = (27) 'yG8& andp(r) is the probability distribution
of starting positions.

In the impulse-propagator schemE?), the propagator de-
scription of motion is retained in the case of generalized
gradient waveforms. For generalized gradient and RF pulse  A(q) = f dru(r)ue(r)expi2mq-r) [10c]
trains, one may speak of an effective gradig(t} such that the
effect of phase-inverting 180° RF pulses can be mimicked by

simply using gradient pulses of opposite sign (while the effeg’hdv is the pore volume.

of 90° RF pullses. IS to switch the.gragllent off). Thg impulse- The beauty of Eq. [9] is that any waveform may be handled
propagator trick involves approximating the gradient wave-

form, g(t), by a succession of impulses, such that the ti [ovided that we calculate just three matrid8er), S(q), and

integral of this succession provides a good representation of vogaéqv)éfc\;vrrr]r?reTﬂelssr;{zeescr:;ﬂ]istxvg]/g?clji ?ssir?egoeilgsgzze;hsi
J g(t)dt. By this means the molecular translational motion i ' P P

L . . ! . ﬁ1e indicesm, in accordance with Eq. [7], with negative
subdivided into a sequence &f discrete time intervalsr ) A . . - )
. . . . effective gradients represented by Hermitan conjugation (i.e
bounded by the gradient impulsgs, d..:, etc., with all spin

. . _ . . A(_Qn) = A(qn)T
phase evolution taking place at well-defined times at theThe finite gradient pulse waveform is shown in Fig. 2. It is

boundgnes Of. those mtervals,. and W.'th aII.moIecuIar monqu];oken into N + 1 intervals so that the total effective
occurring during the intervening periods, in the absence 0 . . ) .

. ; : scattering wave vector amplitudedsor = (K + 1)q, with A
phase evolution. This approach permits the use of the narro_w(N + Y7 ands = (K + Y. Hence
pulse approximation of Eq. [6] for each migration period. The 27 - 2T
g values are determined by digitizing the waveform amplitude
g(nT) into units of dimensiow,, At time nt the impulse will E = S(q)[RA(Q)]*RM¥[RAT(q)]*RS'(q). [11]
beq, = m,q whereq = (2m) *y8gse,andm, is some positive
or negative integer, depending on the local magnitude and sign

FOR SPECIFIC GEOMETRIES

Rkk = eX[Z( _)\kT) [10b]

m, = integ(g(N7))/Gseep 71 planes
By this means the echo amplitude at the end of the sequenc®riginally the matrix formalism was applied to the case of
may be written restricted diffusion between parallel plates with perfectly re-

flecting walls. The extended results presented here allow fc

relaxation at the fluid—surface interface.
E=| dry | dry...| dryy The eigenfunction solutions for parallel plates with nonre-
flecting walls, that can be found in Refl5), are
X p(ryexpi2mqy - ry) Pyryfry, ) .
X exp(i2mq, - ry) Pyry|rs, 7) un(2) = an005< 2&; a) [12a]
. expgi2may - ry) Pyl Fes )

. 4
X eXHi2mus ). @ (2= Bsin{ 2602 [120]
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where«, and ,, are the normalization coefficients,

2 . 2
®n = sin 2¢, an m = sin 2¢,,
Va(“ 2§n> a(” 2§m>

[13]

and ¢, and ¢, are the roots to the transcendental equations

361

1 2 2
B E (1 + [SII’\(an)/an]) (1 + [Sin(2§n’)/ 2§n’])
[(an sin(rqa)cog &, + &y))

- ((gn + gn’)COE(Trqa)Sin(gn + gn’))
(an)z - (gn + gn')2

(mqa sin(mqa)cog &, — &) ]

- ((gn - §nf)c05(17qa)sin(§n - gn’))
(ﬂ'qa)z - (gn - gn’)2

[15€]
Ma Ma a2
Etang, = D and (,cotl,= — D [14] A (Q) = B f sin( 2 ;)
—al2
Incorporation of relaxation at the walls corresponds to a non- z

zero value forM.

These eigenfunctions are substituted into Eqgs. [10a] to [10c]
and evaluated for the case of a magnetic field gradient applied

normal to the walls, withg = |q],

_ vz 28z .
S(q) =V 1’2anj cos<a>exp(|27rqz)dz

a2

2
N J(l + [Sin(2€,)/2€,])

[(wqa sin(mqa)cosé&,) — (&.cogmqa)sin fn)]
X 2 2
(mqa)® — &5

[15a]

SH(q) =V VB Jalz sin(zémz) exp(i2mqz)dz
m a

a2

) 2
- J(l — [sin(2.)/2¢,))

y [(émsin(wqa)cosgm) — (mgqa cogmqa)sin ém)]

(mqa)® — &5
[15b]
) Dt
R = exp(—4§n az) [15c¢]
) Dt
Rinm = exp<—4§m az) [15d]

al2 z
Ann’(q) = Ay f CO{ 2§n a)

—al2

z
X cos( 2&, a) exp(i2wqz)dz

X sin< 2L a) exp(i2mgz)dz

B 1 2
~ 2 \(L + [Sin2Zm)/ 2L0m))
2
XN+ [SiN28m) 2L ])

{(an sin(mqa)cos {m —~ Lm))
X

= (({m — Lw)cogmqa)sin(m — Lm))
(an)z - (gm - gm')z
(mqa sin(mqa)cos{m + {m))
- ((gm + gmr)COian)Sin(gm + gm'))
(an)z - (gm + gm’)z

[15f]

a2 z z
Ann(q) = anBm J cos<2§n a) sin(Zgm a) exp(i2mgz)dz

—al2

i 2 2
T2 \/<1 + [SiN&)12¢€,]) J(l — [sin(24,)/ 2Z,])

((&, + w)sin(rqa)cog €, + {m)
— (mqa cogmqa)sin(é, + {m)
(an)z - (gn + gm)2

((&, — {mIsin(rqa)cos &, — Lm) ]

— (mqa codmga)sin(é, — {m)

" (an)z - (gn - gm)2

[159]

The exponential terms along the diagonaRalepend on the
roots, &, and{,,, and the choice of the digitizing time interval,
7. The narrow pulse approximation requires< a’/D, so that
significant decay of these exponential terms will only occut
when &, and ¢, are well in excess of unity. Hence, the
truncation to finite matrices is only possible if these diagona
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elements have reduced sufficiently at the point of truncation,
the dimension at which this cutoff is chosen being determined\,,(q) =
by the precision criteria for the fit. If the elements Rf(and
correspondinghys(g) andA(q)) are labeled by the index (or
w), then the eigenfunction associated with each element is
determined by arranging that the rogtsand(,, increase with
increasingv. This ensures that the most significant elements
are included in the final matrix. In ascending order the roots for
planar geometry aré, &y, &, Lo, &, L, - -
odd values of the index, n = (v + 1)/2 and for even valuesr =
of the indexy, m = v/2.

From this pointy and p will be used to label the rows and
columns of theS(q), A(g), andR matrices.

Cylinders

To apply the matrix formalism to the case of restricted
diffusion in cylindrical pores it is necessary to obtain solutions
for the three matrix operator§(q), A(q), and R using the
appropriate cylindrical boundary eigenfunctiod$)

r
U,,(r) = ann"]n( gnn’ a) cosneé, [16]

wherea,, are the normalization coefficients,

r 2 gﬁn/ Ma 2 i , 1/2
oo | (el (st /(5] =)

[17a]
r 1 g%n( Ma 2 1/2
Cont = _(W>(Jo<§m>)/ ((D) i gg”'ﬂ |
[17b]
andé,, are the roots of the transcendental
J%(gnn) Ma
& m == D - [18]

Incorporation of relaxation at the walls corresponds to a non-
zero value forM.

Substituting these eigenfunctions into Eqgs. [10a] to [10c]
gives, in the case of a magnetic field gradient applied trans-
verse to the cylinder,

a r 2w
S.(q) = Vllzann’f Jn( o a)r J cosné
0 0

SV(Q) = 2mi r"Vllzann’(

a r r
Ay Oy Jn gnn’ a Jk gkk’ a r
0

2
X f cosnb cosk6 expligr cos6)deodr, [19c]
0

., etc. Therefore for where the gradient direction defines the polar axis suchgthat
qr cos 6.
These integrals may be evaluated to yield

1
a — (2mQqa) 2)
X (énn'\]n(zwqa)\]wrl(gnn’)
- ann(gnn')Jnﬂ(Zan))

5 Dt
RVV = ex _gnn’ ?

[20a]

[20b]

n k
Avp,(q) = ann'akk'<§;n) (égk) Waz

[~ae)

1 ,\"
> <_4§kk'>
X2

3
m=0 m!F<m+ k+>

3
p—Opll“(njthrZ) 5

1 \®

i ntk * (_4(qa)>

X <2qa> S:0—| 3
S.F(S+|+2)

1
X((2n+2k+2p+2m+25+2))
( 1(qa)2)t
N Gl
o) xSy

2 a2 3
ot 4o

2

1
X((n+k+2p+2m+2t+2)) © [20¢]

As mentioned previously, the eigenfunction associated witl
each matrix indexyw or v is determined by the requirement for

X exp(iqr cos0)dedr [19a] the diagonal elements & to decrease with increasingor v.
For the cylindrical boundary eigenfunctions each ragt,, is
R - exp(—gz ’ DT) [19b] labeled by two indices. For each order, of the Bessel
i " a? function there are multiple solutions to the transcendente
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TABLE 1 A
I Y
vip n/k ik Ennl € 8(0) K+1/2 N-K N-K
.- > -—>
1 0 0 0.00 time intervalt
2 1 0 1.84 -
3 2 0 3.05 . n
4 0 1 3.83 increasing K
5 3 0 4.20 < -
2N+1
Note.In the case of cylindrical pores, the eigenfunction associated with each
matrix indexu or v is determined by arranging that the rdgqt increases with B
increasingv. The correspondence betweenn’, andv is shown.k andk’ are 4
the indi ding 1 the valuewf 8(1) K+1/2 NK N-K
e indices corresponding to the value,of T, BTY .
S time interyal
equation (Eq. [18]) and the second indaX, ranks these " n
solutions in ascending order. The correspondence between LU 1 1L ! Vincreasing aror
n’, andv is shown in Table 1 fow = 1 to 5;k andk’ are the - >

indices corresponding to the value of This arrangement 2N+1

ensures the most significant diagonal elementfRddre in- FIG. 3. In finite pulse PGSE experimenig space is sampled by succes-
cluded in the truncated matrix. sively incrementing the area under the two gradient pulses. This can b
achieved by (A) keeping the gradient amplitu@e constant and increasing the
pulse durationg, or (B) keeping the pulse duratiod, constant and increasing
Spheres the gradient amplitudeG.

The treatment of restricted diffusion in spherical pores is the
most mathematically challenging of the basic geomet2gs ( andé,, are the roots of the transcendental
The three matrix operator§(q), A(g), and R are evaluated

using the appropriate spherical boundary eigenfuncti@fy ( ¢ in(&nm) _ @ 23]
n jn(gnn’) D '
r . .
u(r) = ann’jn< £ ) P (cosf), [21] Incorporation of relaxation at the walls corresponds to a non
a zero value forM.

Substituting these eigenfunctions into Eqgs. [10a] to [10c
gives
wherea,,, are the normalization coefficients,

a r
Sy(Q) = Vil/zann’ f Jn( Eom a>r2

-1/2

27\ L, . _
Upy = [(2“ + 1)3 (J n(gnn’) - Jnl(gnn’)]n+1(§nn’)):| ’

1
[22] xf P.(cos0)exp(igr cosh)d(cos)dr
-1
TABLE 2 [24a]
, D7
V/IJ' n/k n’/k! gnn’/gkk’ RVV = eX _gnn’ ? [24b]
1 0 0 0.00 a ; ;
2 1 0 2.08 . .
3 2 0 3.34 Am(Q) = Oy Ogpe J Jr‘l( gnn’ a)]k( gkk' a) r 2
4 0 1 4.49 a
5 3 0 451
1
Note.In the case of spherical pores, the eigenfunction associated with each X f P,(cos6) P (cos6)
matrix indexu or v is determined by arranging that the r@gj; increases with 1

increasingv. The correspondence betweem’, andv is shownk andk’ are .
the indices corresponding to the valueof X expiqr cosf)d(coso)dr, [24c]
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where again, the gradient direction defines the polar axis. sufficiently at the point of truncation. Accordingly the roots
Using the identities shown in the Appendix, one may evag;,, are ordered with increasing magnitude. The root associate
uate these integrals to obtain

. a’
S/(a) = 2(1) "V ey (qa) ‘1’2< 2 2)

(s/2+n+k)
Avu(q) Oy Oy gnngkk (qa 1/2 (2) F<2>

where

X (gnnjn(qa)JnJrl(gnn

n+k+ |

gnn’ - (qa)

1

(I+1/2)
<3 0%
|

(2l + HI'(c + 1)F<C —k+ ;)

r 1F I !
X C_n+§ C— +§

F(c+§)1’(c—l+1)
XT'(c—=n+ DI'(c—k+1)

1 p
g2
«© ( 4§nn’)
X 2 3
=0 —
P p!l"(n+p+2)
1 m
- (—45@)
X 2 3
m=0 m!F<m+ k+2>

1 A%
» (—4(qa))

X 3
=0 s!F<s+ I + 2)

X

1
><((n%—kJrI+2p+2m+23+3)>’

[25c]

=|l=n+k and

n+ k+ I isodd.

qaj (gnn)JnJrl(qa)) [253.]

ex;{ &2 ) [25b]

with each matrix indexu or v is determined by a particular
choice ofn andn’ (or k andk’). Table 2 shows these roots
along with the corresponding andn’ for v = 1 to 5.

NUMERICAL IMPLEMENTATION

The original publication 12) clearly describes the method
for determining the matrix product for a given gradient wave-
form. The expression begins and ends with 8(g) vectors,
inside which the appropriate sandwichA(fq) andR matrices
is placed. TheS(q) and A(q) matrices are calculated for the
required geometry by using roots which include the appropriat
wall relaxation and aj value corresponding to the waveform
digitization. The waveform is broken infd segments of time
7. Typically 100 segments ensures that the resulting discre
waveform function is a valid approximation to the continuous
waveform. It is also important thatbe less than the “charac-
teristic timescales.” These are, respectively, the tim&®,
a/M, and [(yg)’D] ** (23).

In order that the narrow pulse approximation is valid for
each interval it is of course necessary that a’/D. However
in most PGSE experiments designed to probe diffraction ef
fects, it is sufficient that ~ a®/D and unnecessary thAt>
a’/D. Hence, dividing the interval by 100 easily satisfies the
first condition.r < a/M is equivalent to requiringyla/D < N.
GivenN = 100 in our calculation, this condition is certainly
satisfied since foMa/D ~ N the relaxation attenuation would
be so severe that the experiment would be impractical. Esta
lishing the third condition is more subtle. To observe diffrac-
tion it is necessary thatj,.a ~ = and A ~ a’/D. It is
unnecessary thaj,.a > 7 or A > a’/D and so we will
neglect these possibilities. The two conditiogs.a ~ =
and A ~ a*D lead directly to the requirement d{A)/
(27%)%1™"® < [(yg)’D] ** and asé = A this gives0.145 <
[(v9)’D] *. Provideds is subdivided into at least 10 inter-
vals of 7, thent = [(yg)°’D] *® andr < [(yg)’D] " is
easily satisfied for most finite pulse cases wh&re~ 100.

In the matrix calculations effective closure is achieved dowr
the diagonal of theR matrix by approximately the 20th ele-
ment. If it is necessary to decrease the time interval further the
larger matrices are required and the computational time ir
creases accordingly. TH&q) and A(q) matrices were calcu-
lated in ac-programme, requiring several minutes of comput-
ing time on a PowerMac, and the matrix product was evaluate
in the matrix-handling package, Matlab. Matlab handles lon
matrix products with ease, evaluatiigq) at 50 values ofj,
for trains of one hundred 2X 20 matrices, in only a few

As with the other geometries, the limitation to finite matrices iseconds. Any of the code can be provided by contactin
only possible if the diagonal elements 8f have reduced P.Callaghan@massey.ac.nz.
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qa
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i A=02#/D
A A
E E

o1t AR peonmsag o1
.001 ¢ N / .001 ¢
L0001 .0001 +
0.0 1.0 2.0 3.0 0.0

qa

FIG. 4. The results of the matrix calculations are displayed as solid lines and compared absolutely with discrete points taken from the Monte
simulations of Linse and Sierman {6). Theq values are changed by altering the duration of the gradient pulse as demonstrated in Fig. 3A. The echo attent
E(q) is shown forA = 0.2a%D andA = a/D for (A) and (B) planar, (C) and (D) cylindrical, and (E) and (F) spherical geometries. The solid circles correspc
to y*g* = 40 and the open squares correspondtg* = 200. Thebroken lines have been added for reference to indicate the narrow pulse limit.

COMPARISON WITH SIMULATIONS whereqqor is increased from 0 ter/a by settingq to #/K @

) ) -~ and incrementing the integdf from 0 to K. The ratio
The results of the matrix calculations were verified by conk IN = 8,J/A. The results fod = 0.2a%D andA = a%D

paring them with Monte Carlo computer simulations publishege shown in Fig. 4 for planar, cylindrical, and spherical pores
by hLlnse ?nd Sderman_ M})' These Slg’ll;lat:(ons _presEE(q), i Data from the matrix products are displayed as solid lines an
with g values successively increased by keeping the gra '%W%crete points taken from the computer simulations are ovel

amplitude, G, constant and varying the duratiof, of the . . . - . .
. ) ) Jaid. Linse and Sderman define a “dimensionless gradient
gradient pulse; see Fig. 3A. The matrix operator expressign .. bk 3 . . o=
. : : . amplitude,”y*g* = yga’/D, which provides an indication of
required to represent their experiment is

the ratio of8 to A whenga = . For example ifA = a’/D

_ K N—K andy*g* = 20, thend = A whenqa = ; see Table 3. The

Eror, 4) = S(@[R(7) Al@)]"R(7) narrow pulse limit ofy* g* — o is evaluated using the above
X [R(7) A(9)]*R(7)S(q), [26] matrix product withK = 0 andq = gor and shown as a
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A
E
.01
.001 ¢
A
.0001
0.0 1.0 2.0 3.0
qa
1¢
.1;
lf :
.01
.001
C
.0001 *
0.0 1.0 2.0 3.0
qa
1 H -
A=028#/D
| ~ Yigr =40
E
.01
.001
E
.0001 e
0.0 1.0 2.0 3.0
qa

001 ¢

.0001 *
0.0

001 ¢

.0001

.0001 -
0.0 1.0

FIG. 5. Planar geometry in which the broken lines demonstrate the effect of including relaxation at the pore surfaces for each of the curves in Figs. -
4B. The solid curves are obtained by calculating the roots in Eqg. [14] M#&D = 0, while the dashed curves are fldha/D = 1 andMa/D = 2.

dotted line on each graph. The solid circles in Fig. 4 correspondNote that these comparisons involve no fitted parameter

to y*g* = 40 and the open squares correspond/tg* =

200.
TABLE 3
y*g* A 8/A (whenga = )
40 0.2 25
40 1.0 0.5
200 0.2 0.5
200 1.0 0.1

Note.y* g* gives an indication of the ratio df to A whenga = . Because
it is not physical foré to be greater thad, wheny*g* = 40 andA = 0.2,
thenE(q) can only be calculated out to a maximugrvalue of 0.4mx/a.

The calculations are absolute. The excellent agreement b
tween the Monte Carlo simulations and the theoretical re
sults in all three geometries provides solid support for the
use of the matrix formalism to analyze the finite pulse PGS
experiment.

EFFECT OF WALL RELAXATION

Many physical systems can be justifiably modeled withou
allowing for relaxation at the walls. Typical values found in the
literature for the NMR surface relaxivity parametbt, are of
the order of 1-1Qums* for synthetic materials such as pro-
celain, glass beads, alumina, and silica g&i).(For water,
whereD ~ 2 X 107° m® s™%, diffusing in pores of the order
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A a4k |
E FE
01 .01 '
.001 | .001 ¢
.0001 L' o 0001 o
0.0 1.0 2.0 3.0 0.0
qa
1 .
A=0282/D A=2/D
L1 Yrg* = 200 YEg* = 200
E
01 + \\‘\\\,/’—
.001
.0001 -C
0.0 1.0 2.0 3.0
qa
1~ ,
AN A=02#/D
A RN Yrg* =40
E
01t
.001
.0001 [E‘ : -
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
qa qa

FIG. 6. Cylindrical geometry in which the broken lines demonstrate the effect of including relaxation at the pore surfaces for each of the cun
Figs. 4C and 4D. The solid curves are obtained by calculating the roots in Eq. [L8Meitb = 0, while the dashed curves are fofa/D = 1 and
Ma/D = 2.

of 10 um, thenMa/D < 1 and a model with reflecting walls CONSTANT G METHOD
is a valid approximation.
The PGSE experiment requirBs\/a” ~ 1 (orD/a ~ a/A), It is possible to samplg space by holding the gradient ampli-

if restricted diffusion is to be observed. Therefore we cafde,G, constant and varying the duratioh, This is the experi-
rewrite the requirement for the perfectly reflecting wall approdment described above and which is shown schematically in Fig
imation, Ma/D < 1, asMA/a < 1. Hence, in systems with 3A. The curves in Fig. 4 show the case where no relaxation occu
smaller pores or slower diffusing fluids, or in materials, such as the pore surface. The effect of relaxation, Ma/D = 1 and
rocks @4) and cement paste%), where the mineralogy can Ma/D = 2 in the eigenvalue equation, can be seen in Figs. 5, ¢
significantly increase the surface relaxation, the effect canratd 7 for planar, cylindrical, and spherical pores, respectively. |
necessarily be ignored. Hence, it is useful to have an undeach graph the solid curves are obtained by calculating the roc
standing of the effect and significance of the fluid—surfade Eqgs. [14], [18], and [23] withMa/D = 0, while the dashed
interaction on they-space data. curves are foMa/D = 1 andMa/D = 2. As expected, the effect
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A=028/D ]
] Yig* oo
E
.01
001 |
A %
.0001 :
0.0 1.0 2.0 3.0
qa
1
A=028/D
L Yrg* =200
E
.01
.001 P 5:5
.0001 »C L . o
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
qa qa
1: 1 =< —
’ A=02#/D T A=/D
p Yig* = 40 ; \\\\\\ vEg* = 40
E E
.01 01 DNERNE
.001 .001 RN
.0001 E x .0001 'LF : ; -
0.0 1.0 2.0 3.0 0.0 1.0 2.0 8.0
qa qa

FIG. 7. Spherical geometry in which the broken lines demonstrate the effect of including relaxation at the pore surfaces for each of the curves in F
and 4F. The solid curves are obtained by calculating the roots in Eq. [23]MaftD = 0, while the dashed curves are fléla/D = 1 andMa/D = 2.

of significant wall relaxation is an apparent narrowing of the poe= qo/K, the integeiK being set such that the ratid/N =
and a decrease in the magnitude of the coherence peak. 8/A. The results fo = 0.2a*/D andA = a*D and no wall
relaxation are shown in Fig. 8 for planar, cylindrical, and
spherical pores. The solid lines are the narrow pulse limits

. ... calculated by setting{ = 0, andq = qyor. The dotted lines
Alternatively g space can be traversed by maintaining @how the two useful cases 6f= A ands = 0.5A.

constant gradient pulse duratia$),and incrementing the am- Figures 9, 10, and 11 show the effect of relaxation at th

plitude, G see Fig. 3B. Using the matrix formalism thISﬂuid—surface interface for planar, cylindrical, and spherical
method is represented by the product geometries, respectively. The solid curves are obtained b
calculating the roots from the transcendental equations (Eq
[14], [18], and [23]) withMa/D = 0, while the dashed curves
are forMa/D = 1 andMa/D = 2.

When samplingy space by holding the pulse duration con-
whereq-or is increased from O ter/a by steppingg such that stant, the effective narrowing of the pore is more significan

CONSTANT &6 METHOD

E(dror, ) = S(@)[R(7) A(@)]*R(m)"*

X [R(7) A(@)]*R(7)S(q), [27]
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.001
.0001 e |
0.0 1.0 2.0 3.0
qa
1 1
1 Ak
.01 .01
001 ; 001 ¢
i |
ooo1 [C : J .0001 *
0.0 1.0 2.0 3.0 0.0
qa
15 1
A A
.01: .01
.001 ¢ 001t
b
.0001 .0001 -
0.0 1.0 2.0 3.0 0.0

FIG. 8. The matrix product is used to predict the results from the finite pulse PGSE experiment shown schematically in FigRBldé=are increased
by increasing the amplitude of the gradient pulses and holding the pulse width constant. The echo attE(gjatsoshown forA = 0.2 a*D andD = a’/D
for (A) and (B) planar, (C) and (D) cylindrical, and (E) and (F) spherical geometries. The dashed curves corregpbrd @5 andd/A = 1.0. The solid lines
have been added for reference to indicate the narrow pulse limit.

than if the gradient amplitude is unaltered, as can be seenibglusion of relaxation at the walls. Many natural porous mediz
comparing Figs. 4 and 8. The effect of significant wall relaxcan be modeled using one of these cases. Spherical and cyl
ation is a further narrowing of the apparent pore size anddeical geometries are also of particular significance in the stud
lowering in magnitude of the first coherence peak. Indeed theé emulsions and colloidal structures.
magnitude of the peak shows a shift similar to that associatedrhe next level in the development of the matrix formalism
with the pore shape being deformed from planar to cylindricel to address the problem of interconnected pores. Fc
to spherical, a result which emphasizes the importance r@fyular structures, eigenmode expansions are possible in
allowing for relaxation effects if the geometrical interpretatioRasis of Bragg waves26). However, for glassy materials
is to remain sound. where no orientational order exists this route is not possible
Previously the extension of the narrow pulse PGSE expel
CONCLUSIONS iment to such materials was achieved by means of a pot
The extension of the impulse-propagator methodology to thepping theory §). The combining of this theory with the
case of spherical and cylindrical pores is significant, as is thmpulse-propagator method and hence the extension of tt
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A
E
.01
.001 ¢ 001 ¢+
0001 - L0001
0.0 1.0 2.0 3.0 0.0

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0

qa qa

FIG. 9. Planar geometry in which the broken lines demonstrate the effect of including relaxation at the pore surfaces for each of the dashed curves
8A and 8B. The solid curves are obtained by calculating the roots in Eq. [14]MéitD = O, while the dashed curves are fda/D = 1 andMa/D = 2.

.001

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0

qa qa

001 } 001 ¢

.0001 = : | .0001 -
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0

qa qa

FIG. 10. Cylindrical geometry in which the broken lines demonstrate the effect of including relaxation at the pore surfaces for each of the curves ir
8C and 8D. The solid curves are obtained by calculating the roots in Eq. [18MdétD = 0, while the dashed curves are fda/D = 1 andMa/D = 2.
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1 =
At
E
.01
.001
.0001 ' ‘ J .0001
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
qa qa
1 1
A=0282/D
y 3 8A=10 4l
: AR :
E : N E
.01 .01
.001 ¢ - .001 ¢ ;
|
|
.0001 C ' ) .0001 D : :
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FIG. 11. Spherical geometry in which the broken lines demonstrate the effect of including relaxation at the pore surfaces for each of the cur
Figs. 8E and 8F. The solid curves are obtained by calculating the roots in Eq. [23Mwitb = 0, while the dashed curves are fbta/D = 1 and
Ma/D = 2.

matrix formalism to porous media will form the basis of a 1

later publication 27). J jn(ar)ja(bryr2dr
Finally we note that although this method has been presented J,

in the context of PGSE NMR, the matrix approach is ideally

suited to handle the theoretical treatment of microimaging B

experiments. Where gradients of changing orientation are used ~a’l-bh,

(as in polar or spatiabj-space rasters), the formulae could 1

easily be modified to include the effects of gradient impulses in A o - :

each of the encoding directions. Using the methods outlined in a(J”(b)J (@) + 3 J"(a)Jn(b)>>

this paper, the analysis of image artifacts, such as edge en-

hancement due to restricted diffusion, should be straightfor-

ward and accurateld).

1
(b(jn(a)j’n(b) + Zjn(a)jn(b)>

%

P,(cos0)P,(cos) = > aP,(cosh)
|
APPENDIX

L . where
The following identities were used to evalua®q) and

A(q) for the case of spherical boundary conditions:
a=0 if [n—k<I<|n+kl or (n+k+1)

2s+ 1)I'A/2T'(s+ HI'(s—n+1/2)
XT(s—k+1/2T(s—1+1/2)

N . T 27¥(s+ 3/2)T(s—n+ 1)
jn(r) = on+ 1 (Jn-1(r) = jasa(r)) XT(s—k+ DI(s—1+1)

( )_\/7<1 >n+1/2§< (_1/4(ar)2)p )
jn(@n =45 (7 ar = p!T'(n+p+ 3/2) ands = (n + k + 1)/2.

Lo n+1
jn(r) = mlnq(f) - mlnu(f)

for all otherl
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