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A simple matrix formalism presented by Callaghan [J. Magn.
eson. 129, 74–84 (1997)], and based on the multiple propagator
pproach of Caprihan et al. [J. Magn. Reson. A 118, 94–102
1996)], allows for the calculation of the echo attenuation, E(q), in
pin echo diffusion experiments, for practically all gradient wave-
orms. We have extended the method to the treatment of restricted
iffusion in parallel plate, cylindrical, and spherical geometries,

ncluding the effects of fluid–surface interactions. In particular,
he q-space coherence curves are presented for the finite-width
radient pulse PGSE experiment and the results of the matrix
alculations compare precisely with published computer simula-
ions. It is shown that the use of long gradient pulses (d ; a2/D)
reate the illusion of smaller pores if a narrow pulse approxima-
ion is assumed, while ignoring the presence of significant wall
elaxation can lead to both an underestimation of the pore dimen-
ions and a misidentification of the pore geometry. © 1999 Academic

ress

INTRODUCTION

The influence of boundary restrictions on fluid diffusiv
as important implications for the modeling of fluid transp

n porous media. The NMR signals obtained from the in
enetrating fluid in a porous medium are also strongly in
nced by boundary effects. For example, in imaging and
roimaging experiments edge enhancement effects may
1–3). In gradient spin echo measurements of restricted d
ion, the pore morphology can impart a characteristic sign
hich permits the use of these measurements to obtain

ural insight via a diffraction formalism (4–6). In relaxation
easurements the effects of differential relaxivity at the

urface and within the fluid bulk can provide information ab
ore surface-to-volume ratios (7). The use of such NMR ph
omena is well-established in food science, in petroleum
ineering, in biomedicine, and in materials science (8).
Any effective application of these methods depends on

recision of theory used in the data analysis. In practice
pplication of gradient spin echo and microimaging exp
ents to the study of porous media can be severely lim
ecause of some experimental constraints which arise di
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rom the requirements of the theory. In particular the des
ion of the signal dependence on pore morphology has
ended, until very recently, on the need for gradient puls
e sufficiently narrow in time that the distances diffused by
olecules are insignificant compared to the pore dimens
ecause the distances probed are inversely related to th
nder gradient pulses, and because the magnitudes of
ulses tend to be limited by coil and current capabilities,

emporal limitation has restricted both the time and the dist
cales accessible to gradient spin echo NMR. A relaxatio
he narrow pulse condition would provide access to le
cales on the order of or less than 10mm. Furthermore, if th
heory could be adapted to deal with any gradient wave
odulation whatsoever, then the interpretation of imaging
ould be more precise and the use of, for example, oscilla
aveforms, could lead to the use of new frequency dom
ethods which would provide access to the submillisec

imescale (9, 10).
Recently a theoretical method was proposed by Caprihet

l. (11) which has the potential to address these difficultie
heir approach the gradient waveform is notionally subdiv
nto a sequence of narrow gradient impulses and evol
eriods in which no gradient is present. This trick permits
se of successive propagators for the spin motion sandw
etween evolution operators describing the phase disp
ents caused by each impulse. The great advantage of s
ecomposition is that it allows one to embed all the neces

nformation about boundary influence to the spin motion in
orm of the propagators, each of which may be express
igenmodes of the solutions to the diffusion equation u
ppropriate boundary conditions. In a subsequent article12)
ne of us showed that this trick could be expressed in a
imple mathematical language based on the use of m
ultiplication. Indeed, for any gradient waveform whatsoe
nly three matrices,R, S, andA, need be calculated and t
nal expression for the echo attenuation can be written dow
closed form comprising a product of these matrices whi

imply related to the known gradient modulation. Furtherm
he numerical calculation of this attenuation takes only sec
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359SPIN ECHO ANALYSIS OF RESTRICTED DIFFUSION
sing modern matrix multiplication packages such as “M
ab.” In that earlier article these matrices were presented fo
ase of molecules constrained within planar pores in the
ence of wall relaxation and the results so obtained ag
recisely with computer simulations of the pulsed gradient
cho (PGSE) NMR experiment (13) under finite pulse duratio
onditions. In a later publication (14) we have demonstrate
imilar agreement with the results of microimaging exp
ents on rectangular pores in which significant edge-enh
ent effects were present.
We now present exact analytic forms forR, S, andA in the

ase of all three geometries of practical significance,
phere, cylinder, and plane, and allow in these expression
he effects of wall relaxivity. The eigenmodes for these p
ems are well-known (15) and we use these to calculate
elevant matrix element expressions, verifying the nume
esults of our calculations by comparison with published c
uter simulations (16), in the case of perfectly reflecting wal
iven the known influence of wall relaxation effects on

elevant eigenmode parameters, this particular verificatio
ach of the three geometries helps provide confidence i
ntire theory.

PROPAGATORS FOR RESTRICTED DIFFUSION

The key mathematical tool used to describe the motio
olecules undergoing restricted diffusion is the conditio
ropagator,Ps(r ur *, t), an ensemble-averaged probability d
ity for spin displacement fromr to r * over a time,t. Ps(r ur *,
) obeys the initial condition,

Ps~r ur *, 0! 5 d~r 2 r *!, [1]

long with the Ficks’ law differential equation,

D¹9 2Ps 5 ­Ps/­t. [2]

his equation may be solved using the standard eigen
xpansion (17)

FIG. 1. Representation of the
t-
he
b-
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in

-
e-

e
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-

al
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he

f
l

-

de

Ps~r ur *, t! 5 O
n50

`

exp~2lnt!un~r !u*n~r *!, [3]

here theun(r ) are orthonormal set of solutions to the He
oltz equation parameterized by the eigenvaluel n and are
ubject to the identity

d~r 2 r *! 5 O
n50

`

un~r !u*n~r *!. [4]

he eigenvaluesl n depend on the boundary condition for
ase of relaxing walls, namely (7)

Dn̂ z ¹Ps 1 MPs 5 0, [5]

heren̂ is the outward surface normal andM is the usual wa
elaxation parameter (7). Using these relationships Eq. [1] h
een solved exactly in the case of molecules diffusing w
arallel planes, cylinders, and spheres and closed form ex
ions for these geometries have been derived (15, 18–20).

FIG. 2. Schematic illustration of impulse decomposition of the finite p
idth PGSE experiment in whichqTOT 5 (N 1 1)q, D 5 (N 1 1

2)t, andd
(K 1 1

2)t. Breaking the waveform into typically 100 impulses allows
cho attenuation to be calculated rapidly while providing suitable digitiz
f the gradient pulses.

ndard two-pulse PGSE experiment.
sta
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360 CODD AND CALLAGHAN
THE IMPULSE-PROPAGATOR SCHEME

In order to explain the impulse-propagator method it is he
o begin with the standard two-pulse PGSE experiment, sho
ig. 1, in which the gradient is applied as two narrow impulse
mplitudeG, durationd, and time separationD. For this experi
ent the normalized echo signal is given by (6, 21)

E~q! 5 EE dr dr *r~r ! Ps~r ur *, D!

3 exp~i2pq z r )exp(2i2pq z r *!, [6]

hereq 5 (2p)21gGd andr(r ) is the probability distributio
f starting positions.
In the impulse-propagator scheme (12), the propagator de

cription of motion is retained in the case of general
radient waveforms. For generalized gradient and RF p

rains, one may speak of an effective gradientg(t) such that th
ffect of phase-inverting 180° RF pulses can be mimicke
imply using gradient pulses of opposite sign (while the e
f 90° RF pulses is to switch the gradient off). The impu
ropagator trick involves approximating the gradient wa

orm, g(t), by a succession of impulses, such that the
ntegral of this succession provides a good representation

g(t)dt. By this means the molecular translational motio
ubdivided into a sequence ofN discrete time intervalst
ounded by the gradient impulsesqn, qn11, etc., with all spin
hase evolution taking place at well-defined times at
oundaries of those intervals, and with all molecular mo
ccurring during the intervening periods, in the absenc
hase evolution. This approach permits the use of the na
ulse approximation of Eq. [6] for each migration period.
values are determined by digitizing the waveform amplit

(nt) into units of dimensiongstep. At time nt the impulse wil
eqn 5 mnq whereq 5 (2p)21gdgstep andmn is some positiv
r negative integer, depending on the local magnitude and
f g(nt) and given by

mn 5 integ~g~nt!!/gstep. [7]

y this means the echo amplitude at the end of the sequ
ay be written

E 5 E dr 1 E dr 2 . . .E dr N11

3 r~r 1!exp~i2pq1 z r 1! Ps~r 1ur 2, t!

3 exp~i2pq2 z r 2! Ps~r 2ur 3, t!

. . . exp~i2pqN z r N! Ps~r Nur N11, t!

3 exp~i2pqN11 z r N11!. [8]
l
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ce

s shown in Ref. (12) once the eigenmode representatio
sed to describe the propagators one obtains the simple m
roduct

E 5 S~q! R@A~q!# m2 . . .R@A~q!# mn

. . . R@A~q!# mNRS†~2q!, [9]

here

Sk~q! 5 V21/ 2 E dr uk~r !exp~i2pq z r ! [10a]

Rkk 5 exp~2lkt! [10b]

Akk9~q! 5 E dr u*k~r !uk9~r !exp~i2pq z r ! [10c]

ndV is the pore volume.
The beauty of Eq. [9] is that any waveform may be hand

rovided that we calculate just three matrices,R(t), S(q), and
(q), where q is the smallest impulse used to digitize
aveform. The shape of the waveform is then expresse

he indicesmn in accordance with Eq. [7], with negati
ffective gradients represented by Hermitan conjugation
(2qn) 5 A(qn)

†.
The finite gradient pulse waveform is shown in Fig. 2. I

roken into 2N 1 1 intervals so that the total effecti
cattering wave vector amplitude isqTOT 5 (K 1 1)q, with D

(N 1 1
2)t and d 5 (K 1 1

2)t. Hence

E 5 S~q!@RA~q!# KRN2K@RA†~q!# KRS†~q!. [11]

CALCULATION OF MATRIX ELEMENTS
FOR SPECIFIC GEOMETRIES

lanes

Originally the matrix formalism was applied to the case
estricted diffusion between parallel plates with perfectly
ecting walls. The extended results presented here allow
elaxation at the fluid–surface interface.

The eigenfunction solutions for parallel plates with non
ecting walls, that can be found in Ref. (15), are

un~ z! 5 ancosS2jn

z

aD [12a]

vm~ z! 5 bmsinS2zm

z

aD , [12b]
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361SPIN ECHO ANALYSIS OF RESTRICTED DIFFUSION
herea n andbm are the normalization coefficients,

an 5 Î 2

aS1 1
sin 2jn

2jn
D and bm 5 Î 2

aS1 1
sin 2zm

2zm
D

[13]

ndj n andzm are the roots to the transcendental equatio

jntan jn 5
Ma

D
and zmcot zm 5 2

Ma

D
. [14]

ncorporation of relaxation at the walls corresponds to a
ero value forM.
These eigenfunctions are substituted into Eqs. [10a] to [

nd evaluated for the case of a magnetic field gradient ap
ormal to the walls, withq 5 uqu,

Sn~q! 5 V21/ 2an E
a/ 2

a/ 2

cosS2jnz

a Dexp~i2pqz!dz

5 Î 2

~1 1 @sin~2jn!/ 2jn#!

3 F ~pqa sin~pqa!cosjn! 2 ~jncos~pqa!sin jn!

~pqa! 2 2 j n
2 G

[15a]

Sm~q! 5 V21/ 2bm E
a/ 2

a/ 2

sinS2zmz

a Dexp~i2pqz!dz

5 i Î 2

~1 2 @sin~2zm!/ 2zm#!

3 F ~zmsin~pqa!coszm! 2 ~pqa cos~pqa!sin zm!

~pqa! 2 2 j m
2 G

[15b]

Rnn 5 expS24j n
2

Dt

a2 D [15c]

Rmm 5 expS24z m
2

Dt

a2 D [15d]

Ann9~q! 5 anan9 E
2a/ 2

a/ 2

cosS2jn

z

aD
3 cosS2jn9

z

aDexp~i2pqz!dz
-

c]
ed

5
1

2 Î 2

~1 1 @sin~2jn!/ 2jn#!
Î 2

~1 1 @sin~2jn9!/ 2jn9#!

3 F ~pqa sin~pqa!cos~jn 1 jn9!!
2 ~~jn 1 jn9!cos~pqa!sin~jn 1 jn9!!

~pqa! 2 2 ~jn 1 jn9!
2

1

~pqa sin~pqa!cos~jn 2 jn9!!
2 ~~jn 2 jn9!cos~pqa!sin~jn 2 jn9!!

~pqa! 2 2 ~jn 2 jn9!
2

G
[15e]

Amm9~q! 5 bmbm9 E
2a/ 2

a/ 2

sinS2zm

z

aD
3 sinS2zm9

z

aDexp~i2pqz!dz

5
1

2 Î 2

~1 1 @sin~2zm!/ 2zm#!

3 Î 2

~1 1 @sin~2zm9!/ 2zm9#!

3 F ~pqa sin~pqa!cos~zm 2 zm9!!
2 ~~zm 2 zm9!cos~pqa!sin~zm 2 zm9!!

~pqa! 2 2 ~zm 2 zm9!
2

2

~pqa sin~pqa!cos~zm 1 zm9!!
2 ~~zm 1 zm9!cos~pqa!sin~zm 1 zm9!!

~pqa! 2 2 ~zm 1 zm9!
2

G
[15f]

Anm~q! 5 anbm E
2a/ 2

a/ 2

cosS2jn

z

aDsinS2zm

z

aDexp~i2pqz!dz

5
i

2 Î 2

~1 1 @sin~2jn!/ 2jn#!
Î 2

~1 2 @sin~2zm!/ 2zm#!

3 F ~~jn 1 zm!sin~pqa!cos~jn 1 zm!!
2 ~pqa cos~pqa!sin~jn 1 zm!!

~pqa! 2 2 ~jn 1 zm! 2

1

~~jn 2 zm!sin~pqa!cos~jn 2 zm!!
2 ~pqa cos~pqa!sin~jn 2 zm!!

~pqa! 2 2 ~jn 2 zm! 2
G .

[15g]

The exponential terms along the diagonal ofR depend on th
oots,j n andzm, and the choice of the digitizing time interv
. The narrow pulse approximation requirest ! a2/D, so tha
ignificant decay of these exponential terms will only oc
hen j n and zm are well in excess of unity. Hence, t

runcation to finite matrices is only possible if these diag
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362 CODD AND CALLAGHAN
lements have reduced sufficiently at the point of trunca
he dimension at which this cutoff is chosen being determ
y the precision criteria for the fit. If the elements ofR (and
orrespondinglyS(q) andA(q)) are labeled by the indexn (or
), then the eigenfunction associated with each eleme
etermined by arranging that the rootsj n andzm increase with

ncreasingn. This ensures that the most significant elem
re included in the final matrix. In ascending order the root
lanar geometry arej1, z1, j2, z2, j3, z3, . . . ,etc. Therefore fo
dd values of the indexn, n 5 (n 1 1)/ 2 and for even value
f the indexn, m 5 n/ 2.
From this pointn andm will be used to label the rows an

olumns of theS(q), A(q), andR matrices.

ylinders

To apply the matrix formalism to the case of restric
iffusion in cylindrical pores it is necessary to obtain soluti

or the three matrix operatorsS(q), A(q), and R using the
ppropriate cylindrical boundary eigenfunctions (15),

un~r ! 5 ann9JnS jnn9

r

aDcosnu, [16]

herea nn9 are the normalization coefficients,

ann9 5 FS 2

pa2DS j nn9
2

Jn~jnn9!
DYSSMa

D D 2

1 j nn9
2 2 n2DG 1/ 2

[17a]

a0n9 5 FS 1

pa2DS j 0n9
2

J0~j0n9!
DYSSMa

D D 2

1 j 0n9
2 DG 1/ 2

,

[17b]

ndj nn9 are the roots of the transcendental

jnn9

J9n~jnn9!

Jn~jnn9!
5 2

Ma

D
. [18]

ncorporation of relaxation at the walls corresponds to a
ero value forM.
Substituting these eigenfunctions into Eqs. [10a] to [1

ives, in the case of a magnetic field gradient applied tr
erse to the cylinder,

Sn~q! 5 V21/ 2ann9 E
0

a

JnS jnn9

r

aD r E
0

2p

cosnu

3 exp~iqr cosu !dudr [19a]

Rnn 5 expS2j nn9
2

Dt

a2 D [19b]
n,
d

is

ts
r

s

-

]
s-

Anm~q! 5 ann9akk9 E
0

a

JnS jnn9

r

aDJkS jkk9

r

aD r

3 E
0

2

cosnu cosku exp~iqr cosu !dudr, [19c]

here the gradient direction defines the polar axis such thq z
5 qr cos u.
These integrals may be evaluated to yield

Sn~q! 5 2pi nV21/ 2ann9S 1

j nn9
2 2 ~2pqa! 2D

3 ~jnn9Jn~2pqa!Jn11~jnn9!

2 qaJn~jnn9!Jn11~2pqa!)
[20a]

Rnn 5 expS2j nn9
2

Dt

a2 D [20b]

Anm~q! 5 ann9akk9S jnn9

2 D nS jkk9

2 D k

pa2

3 O
p50

` S2
1

4
j nn9

2 D p

p!GSn 1 p 1
3

2D
3 O

m50

` S2
1

4
j kk9

2 D m

m!GSm 1 k 1
3

2D

3 1S i

2
qaD n1k O

s50

` S2
1

4
~qa! 2D s

s!GSs 1 l 1
3

2D
3 S 1

~2n 1 2k 1 2p 1 2m 1 2s 1 2!D

1 S i

2
qaD un2ku O

t50

` S2
1

4
~qa! 2D t

t!GS t 1 l 1
3

2D

3 S 1

~n 1 k 1 2p 1 2m 1 2t 1 2!D2 .
[20c]

s mentioned previously, the eigenfunction associated
ach matrix indexm or n is determined by the requirement

he diagonal elements ofR to decrease with increasingm or n.
or the cylindrical boundary eigenfunctions each root,j nn9, is

abeled by two indices. For each order,n, of the Besse
unction there are multiple solutions to the transcende
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363SPIN ECHO ANALYSIS OF RESTRICTED DIFFUSION
quation (Eq. [18]) and the second index,n9, ranks thes
olutions in ascending order. The correspondence betwen,
9, andn is shown in Table 1 forn 5 1 to 5;k andk9 are the

ndices corresponding to the value ofn This arrangemen
nsures the most significant diagonal elements ofR are in-
luded in the truncated matrix.

pheres

The treatment of restricted diffusion in spherical pores is
ost mathematically challenging of the basic geometries22).
he three matrix operatorsS(q), A(q), and R are evaluate
sing the appropriate spherical boundary eigenfunctions15),

un~r ! 5 ann9j nS jnn9

r

aDPn~cosu !, [21]

herea nn9 are the normalization coefficients,

ann9 5 FS 2p

2n 1 1Da3~ j n
2~jnn9! 2 j n21~jnn9! j n11~jnn9!!G 21/ 2

,

[22]

TABLE 1

n/m n/k n9/k9 j nn9/j kk9

1 0 0 0.00
2 1 0 1.84
3 2 0 3.05
4 0 1 3.83
5 3 0 4.20

Note.In the case of cylindrical pores, the eigenfunction associated with
atrix indexm or n is determined by arranging that the rootj nn9 increases with

ncreasingn. The correspondence betweenn, n9, andn is shown.k andk9 are
he indices corresponding to the value ofm.

TABLE 2

n/m n/k n9/k9 j nn9/j kk9

1 0 0 0.00
2 1 0 2.08
3 2 0 3.34
4 0 1 4.49
5 3 0 4.51

Note.In the case of spherical pores, the eigenfunction associated with
atrix indexm or n is determined by arranging that the rootj nn9 increases with

ncreasingn. The correspondence betweenn, n9, andn is shown.k andk9 are
he indices corresponding to the value ofm.
e
ndj nn9 are the roots of the transcendental

jnn9

j 9n~jnn9!

j n~jnn9!
5 2

Ma

D
. [23]

ncorporation of relaxation at the walls corresponds to a
ero value forM.
Substituting these eigenfunctions into Eqs. [10a] to [1

ives

Sn~q! 5 V21/ 2ann9 E
a

a

j nS jnn9

r

aD r 2

3 E
21

1

Pn~cosu !exp~iqr cosu !d~cosu !dr

[24a]

Rnn 5 expS2j nn9
2

Dt

a2 D [24b]

Anm~q! 5 ann9akk9 E
a

a

j nS jnn9

r

aD j kS jkk9

r

aD r 2

3 E
21

1

Pn~cosu ! Pk~cosu !

3 exp~iqr cosu !d~cosu !dr, [24c]

ch

ch

FIG. 3. In finite pulse PGSE experiments,q space is sampled by succ
ively incrementing the area under the two gradient pulses. This c
chieved by (A) keeping the gradient amplitude,G, constant and increasing t
ulse duration,d, or (B) keeping the pulse duration,d, constant and increasin

he gradient amplitude,G.
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364 CODD AND CALLAGHAN
here again, the gradient direction defines the polar axis
Using the identities shown in the Appendix, one may e

ate these integrals to obtain

Sn~q! 5 2~i ! 2nV21/ 2ann9~qa! 21/ 2S a3

j nn9
2 2 ~qa! 2D

3 ~jnn9j n~qa! j n11~jnn9! 2 qajn~jnn9! j n11~qa!! [25a]

Rnn 5 expS2j nn9
2

Dt

a2 D [25b]

Anm~q! 5 ann9akk9j nn9
n j kk9

k ~qa! 1/ 2a3S1

2D
~s/ 21n1k!

GS1

2D
3 O

l

~i ! 3lSqa

2 D ~l11/ 2!

3

~2l 1 1!G~c 1 1!GSc 2 k 1
1

2D
3 GSc 2 n 1

1

2DGSc 2 l 1
1

2D
GSc 1

3

2DG~c 2 l 1 1!

3 G~c 2 n 1 1!G~c 2 k 1 1!

3 O
p50

` S2
1

4
j nn9

2 D p

p!GSn 1 p 1
3

2D

3 O
m50

` S2
1

4
j kk9

2 D m

m!GSm 1 k 1
3

2D

3 O
s50

` S2
1

4
~qa! 2D s

s!GSs 1 l 1
3

2D
3 S 1

~n 1 k 1 l 1 2p 1 2m 1 2s 1 3!D ,

[25c]

here

c 5
n 1 k 1 l

2
, un 2 ku # l # n 1 k and

n 1 k 1 l is odd.

s with the other geometries, the limitation to finite matrice
nly possible if the diagonal elements ofR have reduce
l-

s

ufficiently at the point of truncation. Accordingly the ro

nn9 are ordered with increasing magnitude. The root assoc
ith each matrix indexm or n is determined by a particul
hoice ofn and n9 (or k and k9). Table 2 shows these roo
long with the correspondingn andn9 for n 5 1 to 5.

NUMERICAL IMPLEMENTATION

The original publication (12) clearly describes the meth
or determining the matrix product for a given gradient wa
orm. The expression begins and ends with theS(q) vectors
nside which the appropriate sandwich ofA(q) andR matrices
s placed. TheS(q) and A(q) matrices are calculated for t
equired geometry by using roots which include the approp
all relaxation and aq value corresponding to the wavefo
igitization. The waveform is broken intoN segments of tim
. Typically 100 segments ensures that the resulting dis
aveform function is a valid approximation to the continu
aveform. It is also important thatt be less than the “chara

eristic timescales.” These are, respectively, the timesa2/D,
/M, and [(gg) 2D] 21/3 (23).
In order that the narrow pulse approximation is valid

ach interval it is of course necessary thatt ! a2/D. However
n most PGSE experiments designed to probe diffraction
ects, it is sufficient thatD ; a2/D and unnecessary thatD @

2/D. Hence, dividing the intervalD by 100 easily satisfies th
rst condition.t ! a/M is equivalent to requiringMa/D ! N.
iven N 5 100 in our calculation, this condition is certain
atisfied since forMa/D ; N the relaxation attenuation wou
e so severe that the experiment would be impractical. E

ishing the third condition is more subtle. To observe diffr
ion it is necessary thatqmaxa ; p and D ; a2/D. It is
nnecessary thatqmaxa @ p or D @ a2/D and so we wil
eglect these possibilities. The two conditionsqmaxa ; p
nd D ; a2/D lead directly to the requirement [(d 2D)/
2p 2) 2] 1/3 ! [(gg) 2D] 21/3 and asd # D this gives0.14d !

(gg) 2D] 21/3. Providedd is subdivided into at least 10 inte
als of t, then t # [(gg) 2D] 21/3 and t ! [(gg) 2D] 21/3 is
asily satisfied for most finite pulse cases whered/t ; 100.
In the matrix calculations effective closure is achieved d

he diagonal of theR matrix by approximately the 20th el
ent. If it is necessary to decrease the time interval further

arger matrices are required and the computational tim
reases accordingly. TheS(q) andA(q) matrices were calcu
ated in ac-programme, requiring several minutes of comp
ng time on a PowerMac, and the matrix product was evalu
n the matrix-handling package, Matlab. Matlab handles

atrix products with ease, evaluatingE(q) at 50 values ofq,
or trains of one hundred 203 20 matrices, in only a few
econds. Any of the code can be provided by contac
.Callaghan@massey.ac.nz.
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COMPARISON WITH SIMULATIONS

The results of the matrix calculations were verified by c
aring them with Monte Carlo computer simulations publis
y Linse and So¨derman (16). These simulations presentE(q),
ith q values successively increased by keeping the gra
mplitude,G, constant and varying the duration,d, of the
radient pulse; see Fig. 3A. The matrix operator expres
equired to represent their experiment is

E~qTOT, D! 5 S~q!@R~t! A~q!# KR~t! N2K

3 @R~t! A~q!# KR~t!S~q!, [26]

FIG. 4. The results of the matrix calculations are displayed as so
imulations of Linse and So¨derman (16). Theq values are changed by alterin
(q) is shown forD 5 0.2 a2/D andD 5 a2/D for (A) and (B) planar, (C) an

o g* g* 5 40 and the open squares correspond tog* g* 5 200. Thebroke
-
d

nt

n

hereqTOT is increased from 0 top/a by settingq to p/Kmaxa
nd incrementing the integerK from 0 to Kmax. The ratio

max/N 5 dmax/D. The results forD 5 0.2a2/D andD 5 a2/D
re shown in Fig. 4 for planar, cylindrical, and spherical po
ata from the matrix products are displayed as solid lines
iscrete points taken from the computer simulations are o

aid. Linse and So¨derman define a “dimensionless grad
mplitude,”g* g* 5 gga3/D, which provides an indication o

he ratio ofd to D whenqa 5 p. For example ifD 5 a2/D
ndg* g* 5 20, thend 5 D whenqa 5 p; see Table 3. Th
arrow pulse limit ofg* g* 3 ` is evaluated using the abo
atrix product withK 5 0 and q 5 qTOT and shown as

lines and compared absolutely with discrete points taken from the M
he duration of the gradient pulse as demonstrated in Fig. 3A. The echo a

) cylindrical, and (E) and (F) spherical geometries. The solid circles corr
nes have been added for reference to indicate the narrow pulse limit.
lid
g t
d (D
n li
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366 CODD AND CALLAGHAN
otted line on each graph. The solid circles in Fig. 4 corres
o g* g* 5 40 and the open squares correspond tog* g* 5
00.

FIG. 5. Planar geometry in which the broken lines demonstrate the e
B. The solid curves are obtained by calculating the roots in Eq. [14] wM

TABLE 3

g* g* D d/D (whenqa 5 p)

40 0.2 2.5
40 1.0 0.5
200 0.2 0.5
200 1.0 0.1

Note.g* g* gives an indication of the ratio ofd to D whenqa 5 p. Because
t is not physical ford to be greater thanD, wheng* g* 5 40 andD 5 0.2,
henE(q) can only be calculated out to a maximumq value of 0.4p/a.
dNote that these comparisons involve no fitted parame
he calculations are absolute. The excellent agreemen

ween the Monte Carlo simulations and the theoretica
ults in all three geometries provides solid support for
se of the matrix formalism to analyze the finite pulse PG
xperiment.

EFFECT OF WALL RELAXATION

Many physical systems can be justifiably modeled with
llowing for relaxation at the walls. Typical values found in

iterature for the NMR surface relaxivity parameter,M, are of
he order of 1–10mms21 for synthetic materials such as p
elain, glass beads, alumina, and silica gels (24). For water
hereD ; 2 3 1029 m2 s21, diffusing in pores of the orde

ct of including relaxation at the pore surfaces for each of the curves in F
5 0, while the dashed curves are forMa/D 5 1 andMa/D 5 2.
ffe
itha/D
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f 10 mm, thenMa/D ! 1 and a model with reflecting wa
s a valid approximation.

The PGSE experiment requiresDD/a2 ; 1 (orD/a ; a/D),
f restricted diffusion is to be observed. Therefore we
ewrite the requirement for the perfectly reflecting wall app
mation, Ma/D ! 1, asMD/a ! 1. Hence, in systems wi
maller pores or slower diffusing fluids, or in materials, suc
ocks (24) and cement pastes (25), where the mineralogy ca
ignificantly increase the surface relaxation, the effect ca
ecessarily be ignored. Hence, it is useful to have an u
tanding of the effect and significance of the fluid–sur
nteraction on theq-space data.

FIG. 6. Cylindrical geometry in which the broken lines demonstra
igs. 4C and 4D. The solid curves are obtained by calculating the r
a/D 5 2.
n
-

s

ot
r-

e

CONSTANT G METHOD

It is possible to sampleq space by holding the gradient amp
ude,G, constant and varying the duration,d. This is the experi
ent described above and which is shown schematically in
A. The curves in Fig. 4 show the case where no relaxation o
t the pore surface. The effect of relaxation, i.e.,Ma/D 5 1 and
a/D 5 2 in the eigenvalue equation, can be seen in Figs.
nd 7 for planar, cylindrical, and spherical pores, respective
ach graph the solid curves are obtained by calculating the

n Eqs. [14], [18], and [23] withMa/D 5 0, while the dashe
urves are forMa/D 5 1 andMa/D 5 2. As expected, the effe

he effect of including relaxation at the pore surfaces for each of the
in Eq. [18] withMa/D 5 0, while the dashed curves are forMa/D 5 1 and
te t
oots
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368 CODD AND CALLAGHAN
f significant wall relaxation is an apparent narrowing of the
nd a decrease in the magnitude of the coherence peak.

CONSTANT d METHOD

Alternatively q space can be traversed by maintainin
onstant gradient pulse duration,d, and incrementing the am
litude, G; see Fig. 3B. Using the matrix formalism th
ethod is represented by the product

E~qTOT, D! 5 S~q!@R~t! A~q!# KR~t! N2K

3 @R~t! A~q!# KR~t!S~q!, [27]

hereqTOT is increased from 0 top/a by steppingq such tha

FIG. 7. Spherical geometry in which the broken lines demonstrate th
nd 4F. The solid curves are obtained by calculating the roots in Eq. [
e

a

5 qTOT/K, the integerK being set such that the ratioK/N 5
/D. The results forD 5 0.2a2/D andD 5 a2/D and no wal
elaxation are shown in Fig. 8 for planar, cylindrical, a
pherical pores. The solid lines are the narrow pulse lim
alculated by settingK 5 0, andq 5 qTOT. The dotted line
how the two useful cases ofd 5 D andd 5 0.5D.
Figures 9, 10, and 11 show the effect of relaxation at

uid–surface interface for planar, cylindrical, and spher
eometries, respectively. The solid curves are obtaine
alculating the roots from the transcendental equations
14], [18], and [23]) withMa/D 5 0, while the dashed curv
re for Ma/D 5 1 andMa/D 5 2.
When samplingq space by holding the pulse duration c

tant, the effective narrowing of the pore is more signific

ffect of including relaxation at the pore surfaces for each of the curves
witha/D 5 0, while the dashed curves are forMa/D 5 1 andMa/D 5 2.
e e
23]M
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han if the gradient amplitude is unaltered, as can be see
omparing Figs. 4 and 8. The effect of significant wall re
tion is a further narrowing of the apparent pore size a

owering in magnitude of the first coherence peak. Indeed
agnitude of the peak shows a shift similar to that assoc
ith the pore shape being deformed from planar to cylind

o spherical, a result which emphasizes the importanc
llowing for relaxation effects if the geometrical interpreta

s to remain sound.

CONCLUSIONS

The extension of the impulse-propagator methodology t
ase of spherical and cylindrical pores is significant, as is

FIG. 8. The matrix product is used to predict the results from the finit
y increasing the amplitude of the gradient pulses and holding the pulse

or (A) and (B) planar, (C) and (D) cylindrical, and (E) and (F) spherical g
ave been added for reference to indicate the narrow pulse limit.
by
-
a
e

ed
l

of

e
e

nclusion of relaxation at the walls. Many natural porous m
an be modeled using one of these cases. Spherical and
rical geometries are also of particular significance in the s
f emulsions and colloidal structures.
The next level in the development of the matrix formal

s to address the problem of interconnected pores.
egular structures, eigenmode expansions are possible
asis of Bragg waves (26). However, for glassy materia
here no orientational order exists this route is not poss
reviously the extension of the narrow pulse PGSE ex

ment to such materials was achieved by means of a
opping theory (5). The combining of this theory with th

mpulse-propagator method and hence the extension o

ulse PGSE experiment shown schematically in Fig. 3B. Theq values are increase
dth constant. The echo attenuationE(q) is shown forD 5 0.2 a2/D andD 5 a2/D

etries. The dashed curves correspond tod/D 5 0.5 andd/D 5 1.0. The solid line
e p
wi

eom
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FIG. 10. Cylindrical geometry in which the broken lines demonstrate the effect of including relaxation at the pore surfaces for each of the curv
C and 8D. The solid curves are obtained by calculating the roots in Eq. [18] withMa/D 5 0, while the dashed curves are forMa/D 5 1 andMa/D 5 2.
FIG. 9. Planar geometry in which the broken lines demonstrate the effect of including relaxation at the pore surfaces for each of the dashed cu
A and 8B. The solid curves are obtained by calculating the roots in Eq. [14] withMa/D 5 0, while the dashed curves are forMa/D 5 1 andMa/D 5 2.
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atrix formalism to porous media will form the basis o
ater publication (27).

Finally we note that although this method has been pres
n the context of PGSE NMR, the matrix approach is ide
uited to handle the theoretical treatment of microima
xperiments. Where gradients of changing orientation are
as in polar or spatialq-space rasters), the formulae co
asily be modified to include the effects of gradient impulse
ach of the encoding directions. Using the methods outlin

his paper, the analysis of image artifacts, such as edg
ancement due to restricted diffusion, should be straigh
ard and accurate (14).

APPENDIX

The following identities were used to evaluateS(q) and
(q) for the case of spherical boundary conditions:

j 9n~r ! 5
n

2n 1 1
j n21~r ! 2

n 1 1

2n 1 1
j n11~r !

j n~r ! 5
r

2n 1 1
~ j n21~r ! 2 j n11~r !!

j n~ar! 5 Î p

2ar S1

2
arD n11/ 2 O

p50

` S ~21/4~ar! 2! p

p!G~n 1 p 1 3/ 2!D

FIG. 11. Spherical geometry in which the broken lines demonstra
igs. 8E and 8F. The solid curves are obtained by calculating the ro
a/D 5 2.
ed
y
g
ed

in
in
n-
r-

E
0

1

j n~ar! j n~br!r 2dr

5
1

a2 2 b2
SbS j n~a! j 9n~b! 1

1

2
j n~a! j n~b!D

2 aS j n~b! j 9n~a! 1
1

2
j n~a! j n~b!DD

Pn~cosu ! Pk~cosu ! 5 O
l

`

alPl~cosu !

here

al 5 0 if un 2 ku , l , un 1 ku or ~n 1 k 1 l !

5

~2s 1 1!G~1/ 2!G~s 1 1!G~s 2 n 1 1/ 2!
3 G~s 2 k 1 1/ 2!G~s 2 l 1 1/ 2!

2p 3/ 2G~s 1 3/ 2!G~s 2 n 1 1!
3 G~s 2 k 1 1!G~s 2 l 1 1!

for all otherl

nd s 5 (n 1 k 1 l )/ 2.

he effect of including relaxation at the pore surfaces for each of the
in Eq. [23] withMa/D 5 0, while the dashed curves are forMa/D 5 1 and
te t
ots
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